Improving Shared GPU Clusters for DL Training Workloads

Myeongjae Jeon

UNIST CSE

Deep Learning at Enterprise

Deep learning (DL) is popular

- Speech, Image, Ads, NLP, Web Search ...
- 10.5× increase of DL training jobs in Microsoft

DL training jobs require GPU

– 5 x increase of GPU cluster scale in Microsoft

How to efficiently manage a GPU cluster for DL training jobs?

State-of-the-art DL Cluster Managers

	Gandiva [OSDI 2018]	Philly [ATC 2019]	Optimus [EuroSys 2018]	Tiresias [NSDI 2019]
Objective	Consolidation	Consolidation	Average JCT	Average JCT
Job Property	Any	Any	Converging	Any
Sched. Algorithm	Time-sharing	Locality-based	SRTF	Gittins Index
Input	N/A	Arrival time	Remaining time	Attained service

Most used Microsoft trace[1], will be open for public soon! ©

Widespread Support by Open Source

Schedule GPUs

Kubernetes includes experimental support for managing AMD and NVIDIA GPUs spread across nodes. T

backwards incompatible iterations. The support for AMD GPUs was added in v1.9 via device plugin.

This page describes how users can consume GPUs across different Kubernetes versions and the current

First Class GPUs support in Apache Hadoop 3.1, YARN & HDP 3.0

by Wangda Tan & Vinod Kumar Vavilapalli

IF YOU'RE INTERESTED IN LEARNING MORE, GO TO OUR RECAP BLOG here!

THIS BLOG IS ALSO CO-AUTHORED BY ZIAN CHEN AND SUNIL GOVINDAN FROM HORTONWORKS.

INTRODUCTION - APACHE HADOOP 3.1, YARN, & HDP 3.0

Open Platform for AI (OpenPAI)

OpenPAI is an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.

Table of Contents

- 1. When to consider OpenPAI
- 2. Why choose OpenPAI
- 3. How to deploy
- 4. How to use
- 5. Resources
- 6. Get Involved
- 7. How to contribute

When to consider OpenPAI

- 1. When your organization needs to share powerful AI computing resources (GPU/FPGA farm, etc.) among teams.
- 2. When your organization needs to share and reuse common Al assets like Model, Data, Environment, etc.
- 3. When your organization needs an easy IT ops platform for Al.
- 4. When you want to run a complete training pipeline in one place.

Why choose OpenPAI

The platform incorporates the mature design that has a proven track record in Microsoft's large-scale production environment

Today's Talk

Overall architecture of GPU cluster

Comm cost of distributed training and job placement

Strategy in Philly and Tiresias

Raising a few issues for the future

- Comm efficiency
- Failure handling
- More accessibility on HW

GPU cluster 100s of servers and thousands of GPUs

GPU cluster 100s of servers and thousands of GPUs

HDFS Distributed "shared" storage for training data (and models)

GPU cluster 100s of servers and thousands of GPUs

HDFS Distributed "shared" storage for training data (and models)

RM Managing system resources for jobs submitted online

Resource manager

Queues Resource allocation (i.e., number of GPUs) for each group

Managed by scheduler for fairness (e.g., Apache YARN's Fair Scheduler)

Allocate idle GPUs to a queue which has additional demand

Comm Cost in Distributed Training

Data parallelism is most widely used in DL clusters

Periodic voluminous communication

Workers running on multiple GPUs synchronize training progress

Network Cost in Data Parallel Training

Data parallelism is most widely used in DL clusters

Communication taking 58% on average!

Today's Talk

Overall architecture of GPU cluster

Comm cost of distributed training and job placement

Strategy in Philly and Tiresias Raising a few issues for the future

- Comm efficiency
- Failure handling
- More accessibility

Deeper into Comm Heterogeneity

- 1. High-speed network (i.e., InfiniBand) is rack-localized
- 2. Intra-server GPU comm is only for 4 or 8 GPUs

Cluster InfiniBand Domain 0 InfiniBand Domain nfiniBand Domain Server N Server N Server N Server Server 0 Ethernet

Job Placement: High-level Objective

Job placement must be locality-aware!

High-speed network channel is rack-localized

→ Pack a job's GPUs within a single InfiniBand domain

Each server has 4 or 8 GPUs

→ Pack a job's GPUs onto the smallest number of servers possible

Resource Negotiation

Each job has AM to negotiate resources from RM

CPU/memory assigned proportional to # of GPUs

Simplicity; Easier resource packing

Specific servers in a IBM domain selected

- Originally near-data processing in Bigdata; Now comm locality in deep learning

Decentralized Approach

Let each AM have the global view of the cluster

Scheduling Workflow for Distributed Training

Step 1: Make a request to RM

Calculate # of servers required

"Highest locality" at the beginning (i.e., using the fewest servers)

Pick a rack that has such servers most available

Pick a set of servers

Step 2: Not all GPUs ready until timeout?

Release any acquired GPUs and take a back-off

Avoid starvation

Step 3: Retry request

Increasingly "relax locality" constraints
Allowing more inter-server communication

Trade-off training efficiency for lower waiting

Custer Manager in Tiresias

In Philly, placement requirements (i.e. locality) limit job scheduling

I. Age-basedScheduler

*Minimize*average JCT

2. Model Profilebased Placement Enable locality selectively

Available Job Information

- 1. Spatial: number of GPUs
- 2. Temporal: executed time (age)

Age-based Scheduler

Gittins Index

- Need the distribution of job execution time
- Probability to complete in the near future based on current age

2D-Gittins Index policy

- Age calculated by attained service (# of GPUs × executed time)
- Prioritize a job that has the largest Gittins Index

Model Profile-based Placement

Tensor size in DL models

Large tensors cause network imbalance and contention

Consolidated placement is needed when the model is highly skewed in its tensor size

Today's Talk

Overall architecture of GPU cluster

Comm cost of distributed training and job placement

Strategy in Philly and Tiresias

Raising a few issues for the future

- Comm efficiency
- Failure handling
- More accessibility

Mitigating Comm Cost

Optimize model training for low comm cost

- Need other efficient types of parallelism
- Optimize various types of model (beyond CNNs)

Failure Handling by Cluster Manager

Job failures are frequent, and more common for larger jobs

Per job User errors in code or configuration

→ Need to pre-run the first iteration on a single GPU (cheap)

Across jobs Input format errors or corrupted inputs

→ Need blacklisting and stop retrying

SW & Trace, then HW is Accessible?

Having open platforms are more than necessary!

- 1. Own training infrastructure setup
 - The number of GPUs in distributed training keeps increasing
 - 32 (2016) \rightarrow 128 (2017)
 - -128 GPUs = \$1M
- 2. Borrowing resources from cloud
 - 128 GPUs for 12 hours = \$5K

Summary

Shared GPU cluster is coming popular for DL training

Need to design cluster managers for diverse circumstance

Network cost during distributed training is detrimental

- Worse with increasing use of many GPUs
- Cluster managers can mitigate the cost

Many improvements are desired for better future

Thank You! mjjeon@unist.ac.kr